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Abstract  

 

It is presently unclear whether ovarian hormones, such as estradiol (E2) promote the 

reinforcing effects of nicotine in females. Thus, we compared extended access to nicotine 

intravenous self-administration (IVSA) in intact male, intact female, and OVX female rats (Study 

1) as well as OVX females that received vehicle or E2 supplementation (Study 2). The E2 

supplementation procedure involved a 4-day procedure involving 2 days of vehicle administration 

and 2 days of E2 administration. Two doses of E2 (25 or 250 ug) were assessed in separate groups 

of OVX females in order to examine the dose-dependent effects of this hormone on the reinforcing 

effects of nicotine. The rats were given 23-hour access to nicotine IVSA using an escalating dose 

regimen (0.015, 0.03, and 0.06 mg/kg/0.1 ml). Each dose was self-administered for 4 days with 3 

intervening days of nicotine abstinence. The results revealed that intact females displayed higher 

levels of nicotine intake as compared to males. Also, intact females displayed higher levels of 

nicotine intake versus OVX females. Lastly, our results revealed that OVX rats that received E2 

supplementation displayed a dose-dependent increase in nicotine intake as compared to OVX rats 

that received vehicle. Together, our results suggest that the reinforcing effects of nicotine are 

enhanced in female rats via the presence of the ovarian hormone, E2. 
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1 

 

Introduction 

 

Nicotine and tobacco use: Tobacco products contain nicotine, which has been identified as 

the main compound that motivates smoking behavior (Pogocki et al., 2007; Pontieri et al., 1996). 

For example, acute self-administration of nicotine in nonsmoking human subjects is associated 

with pleasurable subjective responses (Perkins et al., 2001). Similarly, nicotine increases ratings 

of drug high and liking in experienced smokers (Kalman et al., 2005). Humans also show a 

preference for nicotine versus saline in studies involving intravenous (IV; Henningfield et al., 

1983; Harvey et al., 2004) and nasal (Perkins et al., 1996) administration. Taken together, these 

studies show that people use tobacco products largely to experience the pleasurable/reinforcing 

effects of nicotine 

Neurobiological effects of nicotine: Nicotine exerts behavioral effects via activation of 

nicotinic acetylcholine receptors (nAChRs) in the brain. nAChRs belong to a family of ligand-

gated ion channel receptors that are made up of five polypeptide subunits (Albuquerque et al., 

1997; Lindstorm et al., 1996; Dani, 2001; Dani et al., 2001). The different combinations of these 

polypeptide subunits define the various nAChR subtypes (Cooper et al., 1991). nAChRs can be 

homo-oligomeric or hetero-oligomeric. Homo-oligomeric nAChRs are formed from α7, α8, or α9 

subunits. However, hetero-oligomeric nAChRs reflect a combination of αβ, α2, α6, or β2-β4 

subunits (Markou, 2008). 

Previous studies have established that the reinforcing effects of nicotine are mediated via 

the dopaminergic pathway that projects from the ventral tegmental area (VTA) to several forebrain 

structures including the nucleus accumbens, amygdala, and frontal cortex (Corrigall et al., 1994; 

Pidoplichko et al., 1997; Sziráki et al., 2002).  In the VTA, dopamine neurons are under excitatory 
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control via glutamate (Taber et al., 1995). Specifically, nicotine increases dopamine transmission 

in the nucleus accumbens by activating α7 nAChRs located on glutamatergic terminals. When 

nicotine activates α7 nAChRs, it causes the release of glutamate which promotes dopamine release 

in the nucleus accumbens. Nicotine also activates α4β2 receptors located on the terminals of the 

inhibitory neurotransmitter gamma-aminobutyric acid (GABA). When nicotine activates α4β2 

receptors, they quickly desensitize, causing a reduction in inhibitory control of dopamine via 

GABA transmission.  In this manner, nicotine produces an overall increase in dopamine release in 

the nucleus accumbens, which is believed to modulate the reinforcing effects of this drug. With 

regard to sex differences in nAChR expression, previous work has shown that there are no sex 

differences in mRNA or protein levels of various nAChRs in the nucleus accumbens (Azam et al., 

2007). However, the possibility exists that chronic nicotine exposure alters nAChRs in other brain 

regions in a manner that enhances the reinforcing effects of nicotine in female rats.  

Tobacco use in women: Clinical studies have shown that women rate nicotine as more 

pleasurable than men (Perkins et al., 2006). In addition, women who use tobacco regularly report 

higher positive subjective effects following presentation of smoking-related stimuli as compared 

to men (Perkins et al., 1999 & 2001). According to preclinical studies, the latter effects appear to 

be modulated via ovarian hormones, given that high levels of β-estradiol (E2) are positively 

correlated with a greater sensitivity to the reinforcing effects of nicotine in females (Carrol et al., 

2004; Lynch et al., 2009). These studies suggest that women experience greater pleasurable effects 

from nicotine as compared to men, and that the ovarian hormones, E2, likely plays a role in 

promoting the reinforcing effects of nicotine.  

Estrous cycle in rodents: In female rats, the menstrual cycle has three phases defined by 

peak fluctuations in various hormones. The three phases are the follicular, ovulatory, and luteal 
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phase. The proliferative phase begins at the start of menstruation and ends when ovulation occurs. 

During this phase, a process of follicle growth called folliculogenesis occurs. This process is 

mediated by the release of the pituitary hormone, follicle-stimulating hormone (FSH). Follicular 

growth results in the production and release of E2 from granulosa cells that surround the follicles 

in the ovaries. E2 then promotes the proliferation of the endometrial lining in the uterus (Beshay 

& Carr, 2013). Ovulation occurs during the highest expression of follicular growth because 

continuous E2 exposure causes the release of luteinizing hormone (LH) from the anterior pituitary, 

which stimulates the release of the oocyte into the fallopian tube where it remains until fertilization 

(Cahill et al., 1998; Pauerstein et al., 1978). After ovulation, the luteal phase begins. In this phase, 

the remaining granulosa cells that are not released with the oocyte during ovulation become 

enlarged and acquire lutein. These granulosa cells secrete progesterone, which results in the 

preparation of the uterus for embryo implantation (Behshay & Carr, 2013). To our knowledge the 

role of ovarian hormones in modulating the reinforcing effects of nicotine has not been examined 

in female rats.  

Hormones and motivated behavior: Gonadal hormones modulate sex differences in an 

array of behavioral responses. For example, exposure to gonadal hormones in critical periods of 

development result in the sexually dimorphic organization of the nervous system in male and 

female rats (Becker et al., 2007 & 2009 & 2012). It is hypothesized that the sexual dimorphisms 

that exist in the brain are the result of the different environmental demands imposed on males and 

females (Yoest et al., 2014). It is also well established that gonadal hormones modulate sex 

differences in motivated behavior. For example, testosterone and E2 are thought to mediate sexual 

motivation in male (Alexander et al., 1994) and female (Paredes et al., 1999) rats, respectively. 

With regard to addiction processes, E2 promotes motivated behaviors in females via dopamine 
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systems. For example, OVX females that lack E2 display lower basal levels of extracellular 

dopamine as compared to intact females, and E2 treatment restores baseline dopamine levels in 

OVX rats (Xiao et al., 1994). Furthermore, expression of striatal D1 receptors is higher in males 

as compared to females and E2 downregulates D2 biding in females, but not males (Bazzett et al., 

1994). The sex-dependent response of E2 in the brain is hypothesized to be due to the differential 

organization of neural substrates for motivation in males and females. The goal of the present study 

is to examine whether E2 promotes the reinforcing effects of nicotine in female rats.  

 Sex differences in the behavioral effects of nicotine: There are converging lines of evidence 

suggesting that the reinforcing effects of nicotine are greater in adult female versus male rodents 

(Perkins et al., 1999; Carroll et al., 2010; Torres et al., 2009; Pogun et al., 2009). One of the first 

studies in this area demonstrated that female adult rats display faster acquisition rates of low doses 

of nicotine intravenous self-administration (IVSA) as compared to males (Donny et al., 2000). The 

latter study also revealed that female rats reach a higher break point for nicotine infusions on a PR 

schedule of reinforcement than males. Subsequent studies from the same laboratory also showed 

that female rats display 2-fold higher levels of nicotine IVSA as compared to males in the presence 

of a visual stimulus that signals a nicotine infusion (Chaudhri et al., 2005) Female rats also display 

higher levels of nicotine intake in procedures involving oral (Nesil et al., 2011) and IV self-

administration procedures under both short (Rezvani et al., 2008) and long (Grebenstein et al., 

2013) access conditions. These studies suggest that the reinforcing effects of nicotine are higher 

in female versus male rats. Importantly, female rodents also display conditioned place preference 

(CPP) produced by nicotine that is evident across a wider range of doses as compared to male rats 

(Torres et al., 2009) and mice (Kota et al., 2008). Work in our laboratory has revealed that 

ovariectomized (OVX) female rats do not display CPP across an array of nicotine doses in 
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comparison to intact females (Torres et al., 2009). These studies suggest that the rewarding effects 

of nicotine are modulated via ovarian hormones.  

Goals of the Master’s thesis: The role of specific ovarian hormones, such as E2, in 

modulating the reinforcing effects of nicotine in female rats has not been explored. Thus, this 

Master’s thesis project examined sex differences and the role of ovarian hormones in promoting 

the reinforcing effects of nicotine (Aim 1) and the role of E2 in modulating the reinforcing effects 

of nicotine in female rats (Aim 2). Nicotine IVSA was compared in intact male, intact female, and 

OVX female rats as well as OVX female rats that received vehicle or E2 supplementation. Two 

doses of E2 were included to examine the dose-dependent effects of this hormone on nicotine 

IVSA. An extended-access model of IVSA was employed whereby rats were given 23-hour access 

to increasing doses of nicotine separated by 3-day periods of drug abstinence. 

Specific Aims of Master’s Thesis: 

Aim 1: Examine sex differences and the role ovarian hormones in modulating the reinforcing 

effects of nicotine. 

Aim 2: Examine the role of E2 in modulating the reinforcing effects of nicotine in female rats.  

 

Hypotheses: Our central hypothesis is that sex differences in the behavioral effects of 

nicotine are ovarian-hormone dependent. Specifically, we hypothesized that: 1) females will 

display greater nicotine intake as compared to males and OVX females and 2) E2 supplementation 

in OVX rats will increase nicotine intake as compared to OVX rats that do not receive E2 

replacement. Our hypothesis is based on previous studies showing that OVX females display a 

reduction in cocaine intake that is normalized to intact female levels following E2 supplementation 

(Perry et al., 2013). Also, another report revealed that OVX rats that received E2 supplementation 
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displayed greater motivation to obtain cocaine relative to OVX rats that received vehicle (Ramôa 

et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

7 

Methods 

Subjects: Male and female Wistar rats were obtained from an out-bred stock of animals 

(Envigo, Inc., Indianapolis, IN). On post-natal day (PND) 21, the rat pups were weaned and housed 

with a same-sex littermate until PND 60, at which point they were individually housed for the 

remainder of the study. The rats were housed in a humidity- and temperature-controlled (22◦C) 

vivarium on a 12-hour light/dark cycle (lights off at 6:00 am and on at 6:00 pm). Prior to beginning 

the experiment, the rats were handled for 5 days and were given ad libitum access to food and 

water. All experimental procedures described in this Master’s Thesis were approved by the UTEP 

Institutional Animal Care and Use Committee 

Experimental design: Aim 1 compared nicotine intake in intact male, intact female, and 

OVX female rats. Both male and female rats received a sham surgery at PND 60 as a control 

procedure for the OVX surgeries. Aim 2 examined the role of E2 in modulating the reinforcing 

effects of nicotine in OVX females that receive vehicle (peanut oil; OVX-VEH) or an E2 

supplementation procedure involving 2 different doses in separate groups of animals (E2-25 ug 

and E2-250 ug). 

 

Operant procedures:  This work utilized extended access procedures that are established 

in our laboratory (Natividad et al., 2013; O’Dell et al., 2014). IVSA was assessed in standard 

operant chambers (MED associates, St. Albans, VT) that were kept on the same light cycle as the 

holding room. Operant sessions were conducted using 2 retractable levers (active and inactive) 
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that extend 2.5 cm into the chamber. A 28 V white cue light was located above the active lever 

and a dummy light above the inactive lever. A pellet dispenser mounted between the inactive and 

active lever allowed the rats to nose-poke for food. A separate hole located in the back of the 

chamber allowed the rats to nose-poke for water that was released into an adjacent metal dipper 

cup. The exit port of the catheter fitting was connected to a polyethylene tubing within a metal 

spring that was connected to a liquid swivel above the operant chamber. During the first 4 days of 

operant procedures, the rats received food and water training. The rats were allowed to nose-poke 

for the delivery of food pellets (45 mg; Bio-Serv; Frenchtown, NJ) or water (0.1 mL) on a fixed-

ratio 1 (FR-1) schedule of reinforcement. Throughout the operant procedures, the rats were 

removed from the chambers between 11:00 am and 12:00 pm in order to clean the cages and 

replenish the water and food levels. Immediately after being removed from the chambers, the rats 

were weighed and placed individually into their home cage. On the first day of IVSA, the rats were 

presented with a novel active and inactive lever at 12:00 pm. The rats were given access to various 

doses of nicotine IVSA on an FR-1 schedule of reinforcement using an escalating dose regimen of 

nicotine (0.015, 0.03, and 0.06 mg/kg/0.1 mL infusion; base). When the active lever was pressed, 

the nicotine solution was delivered at a rate of 0.1 mL per second. At the onset of the 1-second 

infusion, a cue light was illuminated above the lever for 20 seconds. This was followed by a 20-

second time out period. Responses on the inactive lever did not have any scheduled consequences. 

The nicotine solutions were prepared daily based on the animals’ weight from the previous day. A 

nicotine stock solution was prepared for each IVSA dose using (-) nicotine hydrogen tartrate 

(Sigma-Aldrich, St. Louis, MO) dissolved in 0.9% sterile saline (pH of 7.4). Each dose of nicotine 

was administered in a 4-day cycle with 3 intervening days of drug abstinence. During the 3-day 

abstinence period, the rats were housed in their home cage with ad libitum food and water.  
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 Surgical procedures: At PND 45-46 some female rats received surgical removal of ovarian 

tissue, as described previously (Torres et al., 2009). The OVX procedure was done at PND 45-46 

based on previous work in our laboratory showing that adult female rats that received OVX 

procedures at PND 45 display a reduction in the reinforcing effects of nicotine (Torres et al., 2009) 

and a suppression of anxiety-like behavior and stress-associated gene expression during nicotine 

withdrawal (Torres et al., 2013 & 2015). These studies suggest that after PND 45 ovarian hormones 

play a key role in modulating the behavioral effects and molecular changes produced by nicotine. 

At PND 65, the rats were anesthetized with an isoflurane/oxygen vapor mixture (1-3%) 

and prepared with jugular catheters, as described previously (Natividad et al., 2013; O’Dell et al., 

2014). Following surgery, the rats were allowed to recover for four days and the catheters were 

flushed daily with a 0.2 mL infusion of an antibiotic solution containing Timentin (100 mg/ml) 

and heparinized saline (30 USP units/mL). Prior to nicotine IVSA, the catheter patency was 

verified using a 0.1 mL IV infusion of the short-acting barbiturate Brevital® sodium (10 mg/mL). 

Patency tests were also conducted when aberrant shifts in behavior are detected, and non-patent 

animals will be excluded from the study.  

 E2 supplementation procedure: The rats in Aim 2 received a 4-day E2 supplementation 

procedure that began the day after the OVX surgery. Control OVX females received repeated 

vehicle injections (peanut oil). OVX females that received the E2 supplementation procedure 

received 2 days of a 0.2 ml bolus injection of E2 (25 or 250 ug) and 2 days of vehicle injections. 

The E2 supplementation procedure was repeated 4 times, prior to and throughout IVSA testing. 

The injections were administered each day between 11:00 am and 12:00 pm when the animals 

were removed from the operant chambers. This supplementation procedure is believed to mimic 

normal E2 cycling patterns in intact female rats (Asarian et al., 2002). The latter study was also 
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used to guide our selection of a low physiological dose of E2 (25 ug) and a significantly higher 

dose (250 ug) that is expected to produce strong pharmacological effects. 

Statistics: Average nicotine intake was calculated on a daily basis across different doses of 

nicotine. Each study was analyzed separately using a mixed-measures analysis of variance 

(ANOVA) with group as the between-subjects factor and dose and day within-subjects factors. 

Where significant interactions were observed, post-hoc (Fisher’s LSD) comparisons were 

conducted between groups.  
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Results 

 Study 1 

Figure 1 depicts nicotine IVSA (mg/kg) in intact male, intact female, and OVX female rats. 

The panel on the left reflects daily intake, and the panel on the right reflects mean intake of each 

dose. Overall, the results revealed that female rats display dose-dependently higher levels of 

nicotine intake as compared to intact males and OVX females. Our analysis of daily intake in the 

left panel revealed a 3-way interaction between group, dose, and day (F(12,180)=2.2, P≤0.01). 

Specifically, intact females display higher levels of nicotine intake as compared to both intact 

males and OVX females on Days 5-6 and 11-12 (*P≤0.05). Also, intact females display higher 

levels of nicotine intake as compared to OVX females on Day 7, 8, and 10 (†P≤0.05). Our analysis 

of mean intake in the right panel revealed a 2-way interaction between dose and day (F(4,60)=3.7, 

P≤0.01). Intact females display higher levels of nicotine intake as compared to both intact males 

and OVX females at the 0.06 mg/kg dose of nicotine (*P≤0.05). Also, intact females display higher 

levels of nicotine intake as compared to OVX females at the 0. 015 and 0.03 mg/kg dose of nicotine 

(†P≤0.05). Our group differences in Study 1 do not appear to be related to inactive lever pressing, 

since there were no differences in mean total responses on the inactive lever across IVSA days in 

intact male (17.9+4.9), intact female (24.9+5.7), and OVX female (27.5+4.7) rats (F(2,40)=1.0, 

P=ns).  

Study 2 

Figure 2 depicts nicotine IVSA (mg/kg) in OVX female rats that received vehicle or E2 

supplementation. The panel on the left reflects daily intake, and the panel on the right reflects mean 

intake of each dose. Overall, the results revealed that OVX female rats that received the high dose 

of E2 display greater nicotine intake as compared to OVX females that received vehicle and the 
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low dose of E2. Our analysis of daily intake in the left panel revealed a 3-way interaction between 

group, dose, and day (F(12,138)=2.2, P≤0.01). Specifically, OVX female rats that received the high 

dose of E2 display greater nicotine intake as compared to OVX female that received vehicle on 

Day 1-6, 8, and 10-11 (*P≤0.05). Also, OVX female rats that received the low dose of E2 displayed 

greater nicotine intake as compared to vehicle controls on Day 3 (*P≤0.05). With regard to dose-

dependent effects of E2, OVX female rats that received the high dose of E2 displayed higher levels 

of nicotine intake as compared to rats that received the low dose of this hormone on Day 4, 7, and 

9-10 (†P≤0.05). Our analysis of mean intake in the right panel revealed that OVX female rats that 

received the high dose of E2 displayed greater nicotine intake as compared to vehicle controls at 

each dose of nicotine (*P≤0.05). Also, OVX females that received the low dose of E2 displayed 

greater nicotine intake as compared to vehicle controls at the 0. 015 mg/kg dose of nicotine 

(†P≤0.05). With regard to dose-dependent effects of E2, OVX female rats that received the high 

dose of E2 displayed greater nicotine intake as compared to rats that received the low dose of E2 

at the 0.03 mg/kg dose of nicotine (†P≤0.05). Our group differences do not appear to be related to 

disparities in inactive lever pressing, since there were no differences in mean total responses on 

the inactive lever across IVSA days in OVX female rats that received vehicle (30.8+7.4), E2 25 

ug (25.6+5.8), and E2 250 ug (38.8+9.5) administration (F(2,46)=0.7, P=ns).  
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Discussion 

In summary, my thesis work revealed that the reinforcing effects of nicotine are greater in 

intact female versus male rats. The latter effect appears to be hormone dependent, as the strong 

reinforcing effects of nicotine observed in intact females are reduced in female rats lacking ovaries. 

The unique contribution of this work is that E2 supplementation increases nicotine intake in OVX 

females as compared vehicle controls. 

Our finding that intact females display greater reinforcing effects of nicotine than males is 

consistent with previous reports. In fact, there are now several reports showing that adult female 

rats display greater rewarding effects of nicotine across an array of IVSA (Donny et al., 

200;Chaudhri et al., 2005; Nesil et al., 2011; Rezvani et al., 2008; Grebenstein et al., 2013) and 

CPP (Torres et al., 2009; Kota et al., 2008) experimental conditions. However, we acknowledge 

other reports showing that adult female rats display similar (Feltenstein et al., 2012) or lower 

(Johnson et al., 2012) levels of nicotine intake as compared to males. The notion that the 

reinforcing effects of nicotine are greater in females is also supported in previous studies that 

compared sex differences in nicotine intake during the adolescent period of development. For 

example, adolescent female rats acquired nicotine IVSA at lower doses (Lynch et al., 2009) and 

display higher levels of nicotine intake under extended access conditions (Sanchez et al., 2014) as 

compared to males. Another series of studies revealed that female rats that initiated nicotine IVSA 

during adolescence display an escalation of nicotine intake into adulthood, but this effect was not 

observed in males (Levin et al., 2003 & 2007). The present study contributes to a large body of 

literature suggesting that adult female rats are more sensitive to the rewarding effects of nicotine 

than males.  
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One possibility to consider is that behavioral sensitization may have contributed to the 

greater nicotine self-administration in female versus male rats. Behavioral sensitization is observed 

as an increase in behavioral effects following repeated exposure to a psychostimulant drug, such 

as nicotine (Vanderschuren & Kalivas, 2000). Thus, one important consideration is that chronic 

nicotine exposure produced an enhancement of stimulant behavior in female rats that may have 

lead to an increase in lever pressing behavior in females. Indeed, one study found that female rats 

display greater locomotor and rearing behavior as compared to males following 21 days of nicotine 

exposure (Harrod et al., 2004). Another study found that female rats displayed more locomotor 

activity as compared to males following continuous nicotine exposure in osmotic pumps (Cronan 

et al., 1985). Importantly, another study also found that females displayed greater nicotine-induced 

sensitization after 14 daily IV infusions of nicotine as compared to males, an effect that was 

reduced in OVX female rats (Booze et al., 1999). Although the development of behavioral 

sensitization following chronic nicotine self-administration may have contributed to the enhanced 

lever pressing for nicotine in females, there were no sex differences in responding on the inactive 

lever. These data suggest that the female rats were selectively pressing the nicotine lever because 

of strong reinforcing effects of this drug, and not greater stimulant effects of nicotine as compared 

to males. 

Our finding that OVX rats display reduced nicotine IVSA as compared to intact females 

suggests that ovarian hormones mediate the reinforcing effects of nicotine in female rats. This is 

consistent with previous findings in our laboratory showing that OVX rats do not display CPP 

across an array of nicotine doses (Torres et al., 2009). Similarly, OVX female rats do not display 

CPP produced by ethanol (Torres et al., 2014) and they acquire IVSA of cocaine (Hu et al., 2004; 

Lynch et al., 2001) and heroin (Roth et al., 2001) at slower rates than intact females. These findings 
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suggest that the reinforcing effects of drugs of abuse are modulated by the presence of ovarian 

hormones.  

The unique contribution of the present study is that E2 supplementation dose-dependently 

increased the reinforcing effects of nicotine in female rats lacking ovarian hormones. The finding 

that the strong reinforcing effects of nicotine are normalized in OVX rats that receive E2 

supplementation suggests that E2 is an ovarian hormone that modulates the reinforcing effects of 

nicotine. E2 has been identified as an ovarian hormone that modulates the reinforcing effects of 

drugs of abuse, such as cocaine (Becker et al., 2012). Indeed, previous reports have revealed that 

OVX rats that received E2 supplementation acquired cocaine (Hu et al., 2004; Lynch et al., 2001; 

Jackson et al., 2006) and heroin (Roth et al., 2002) IVSA more readily as compared to OVX rats 

that received vehicle. Our findings extend the literature by showing that E2 also modulates the 

reinforcing effects of nicotine. 

It has been suggested that E2 promotes nicotine reward via an enhancement of dopamine 

transmission in the mesolimbic pathway, which originates in the ventral tegmental area and 

terminates in several forebrain structures including the striatum and nucleus accumbens (Becker 

et al., 2008; Dluzen et al., 1997; Van Vorrhees et al., 2012). OVX female rats display a reduction 

in synaptic levels of dopamine in the striatum that is normalized by following E2 supplementation 

(Ohtani et al., 2001). Also, acute administration of E2 enhances dopamine release via activation 

E2 receptors in the striatum, in female but not male rats (Castner et al., 1993; Becker et al., 1990). 

It has been posited that E2 receptors in the NAcc are located on the terminals of inhibitory gamma-

aminobutyric acid (GABA) medium spiny neurons, such that activation of E2 receptors disinhibits 

GABA and increases dopamine release in the striatum (Yoest et el., 2014). Thus, it is possible that 

E2 promotes the reinforcing effects of nicotine via an increase in dopamine transmission. We also 
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recognize the importance of other ovarian hormones, such as progesterone that has been shown to 

play a role in modulating drug use in females (Carrol et al., 2010; Lynch et al., 2010). Indeed, a 

previous study revealed that peak plasma levels of progesterone are negatively correlated with 

nicotine IVSA in adolescent female rats (Lynch et al., 2009). Future studies are needed to examine 

the intricate relationship between E2 and progesterone in modulating the reinforcing effects of 

nicotine in females.  

The present findings provide several clinical implications to consider. First, our finding that 

the reinforcing effects of nicotine modulated via ovarian hormones suggests that women smokers 

may display compromised smoking cessation rates following various types of hormone therapies, 

such as the E2 antagonist Tamoxifen and/or birth control methods. Indeed, pre-clinical studies 

have revealed that Tamoxifen increases conditioned place preference produced by nicotine in 

female rats (Yararbas & Pogun, 2011). Second, the finding that E2 promotes the reinforcing effects 

of nicotine suggests that E2 may play a central role in promoting tobacco use in women. Indeed, 

clinical studies have shown that women in the follicular phase of the menstrual cycle report greater 

positive subjective effects of nicotine as compared to phases of the cycle (Devito et al., 2013). 

Thus, it is possible that high levels of E2 promote nicotine use and relapse. Future work is needed 

to determine whether E2 promotes the reinforcing effects of nicotine. Future studies might also 

examine the role of other ovarian hormones, such as progesterone in tobacco use. Indeed, 

progesterone treatment has been shown to enhance the subjective ratings of the negative effects of 

nicotine and attenuate the pleasurable effects of this drug following IV nicotine administration 

(Sofuoglu et al., 2009). Future studies are warranted to examine the complex relationship between 

ovarian hormones and tobacco use in women. 
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Figure 1: This figure depicts nicotine IVSA depicted as daily intake (left panel) and mean intake 

(right panel) in intact male (n=10), intact female (n=14), and OVX female (n=9) rats from Study 

1. Rats were given 23-hour access to escalating doses of nicotine (0.015, 0.03 and 0.06 mg/kg) for 

4 consecutive days separated by 3 days of drug abstinence. Intact female rats displayed higher 

levels of nicotine intake as compared to males and OVX females. The asterisks (*) denote 

significantly higher intake in intact females as compared to both intact males and OVX females, 

and the daggers (†) denote higher intake in intact females as compared to OVX females (P<0.05). 
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Figure 2: This figure depicts nicotine IVSA depicted as daily intake (left panel) and mean intake 

(right panel) in OVX female rats that received vehicle (OVX-VEH; n=8) or E2 supplementation 

at a low (OVX-E2 25 ug; n=8) or high (OVX-E2 250 ug; n=10) dose of this hormone in Study 2. 

OVX females that received the high dose of E2 displayed higher levels of nicotine intake as 

compared vehicle controls and OVX females that received the low dose of E2. The asterisks (*) 

denote significantly higher intake in OVX females that received E2 as compared to vehicle 

controls, and the daggers (†) denote higher levels of intake in OVX females that received the high 

versus low dose of E2 (P<0.05). 
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